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Statistical reanalysis of natural products reveals
increasing chemical diversity
Michael A. Skinnidera,b and Nathan A. Magarveya,b,1

In their retrospective analysis of natural product (NP)
discovery since the 1940s, Pye et al. (1) observe a
gradual decline in the proportion of NPs discovered
each year with low similarity to previously known com-
pounds [defined by maximum Tanimoto coefficient
(Tc) < 0.4]. Additionally, the authors report that the
median maximum Tc for all NPs discovered in a given
year has plateaued since the mid-1990s. Their analy-
sis suggests that the pace of structurally unique NP
discovery is decreasing.

However, previous work by Shoichet and coworkers
(2) suggests that the trends Pye et al. (1) observedmight
be expected to hold true for any randomly growing
chemical database. Intuitively, as the number of struc-
tures in a database grows, it becomes increasingly likely
that any comparison with the entire database will result
in at least one pair with structural similarity. It is there-
fore unclear to what extent the observed trends can be
attributed to declining rates of structurally unique NP
discovery, as opposed to the simple increase in the
number of known NPs over time.

We reproduced Pye et al.’s (1) results with our own
in-house database of 32,380 NPs (3): the rate of NP
discovery plateaued beginning in the mid-1990s (Fig.
1A), whereas the proportion of molecules with low sim-
ilarity to known compounds has decreased gradually
over time (Fig. 1B), and median maximum Tcs have
plateaued since the 1980s (Fig. 1C). However, we also
observed these same trends after random permutation
of the year of compound discovery (Fig. 1 D and E).
Additionally, we observed the same trends when NP
structures were substituted with a random sample of
compounds from the ZINC database (4), despite lower
structural similarity overall (Fig. 1 F and G).

These observations suggest that the observed
trends may be a feature of any growing database of
chemical structures, rather than reflecting trends
specific to NP discovery. A more appropriate statisti-
cal null model would compare chemical similarity
between novel and known NPs to random expecta-
tion. We compared the proportion of structurally
unique NPs in our in-house database to the propor-
tion defined by randomly permuting years of com-
pound discovery and found that, since 1990, the
rate of structurally novel compound discovery has dra-
matically outpaced random expectation (Fig. 1H)
(Kolmogorov–Smirnov test, P = 6.2 × 10−14). Over the
same period, the median maximum Tc has declined
relative to random expectation (Fig. 1I) (P = 7.6 ×
10−11). In other words, relative to a randomly grow-
ing library of NP structures, NPs discovered within
the last three decades have been characterized by
unprecedented chemical diversity.

Multiple factors may underlie the increase in chem-
ical diversity relative to random expectation since the
1980s, among them the development of methods to
dereplicate previously discovered compounds, a shift
toward more taxonomically diverse producing organ-
isms, or incentives to publish novel structures rather
than analogs of known compounds. New genome-
guided tools for NP discovery may further expand the
range of known chemotypes (5, 6). Our reanalysis sug-
gests that the future is bright for structurally novel
NP discovery.
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Fig. 1. Statistical reanalysis of natural product structural diversity, 1900–2013. (A) Number of NPs published per year in our in-house database of
NP structures. (B) Fraction of structurally novel NPs published per year (Tc < 0.4). (C) Median maximum Tc between newly discovered NPs and all
previously known NPs as a function of time. All shaded regions show median absolute deviation. (D) Same as B, with year of NP discovery
randomly permuted. Results of 100 bootstraps are shown. (E) Same as C, with year of NP discovery randomly permuted. (F andG) Same as B and
C, with NP structures replaced by a random sample of commercially available compounds from ZINC. (H) Ratio of structurally novel NPs published
per year to random expectation. (I) Ratio of median maximum Tc between newly discovered NPs and all previously known NPs to random
expectation as a function of time.
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